[24]
Combining the DPG method with finite elements
T. Führer, N. Heuer, M. Karkulik, R. Rodríguez
Comput. Methods Appl. Math., 18(4) (2018), pp. 639--652
De Gruyter,
arXiv:1704.07471
[23]
A robust DPG method for singularly perturbed reaction-diffusion problems
N. Heuer and M. Karkulik
SIAM J. Numer. Anal., 55(3) (2017), pp. 1218--1242 SIAM,
arXiv.1509.07560
[22]
DPG method with optimal test functions for a fractional advection diffusion equation
V.J. Ervin, T. Führer, N. Heuer, and M. Karkulik
J. Sci. Comput., 72(2) (2017), pp. 568--585 Springer,
arXiv.1507.06691
[21]
Discontinuous Petrov-Galerkin boundary elements
N. Heuer and M. Karkulik
Numer. Math., 135(4) (2017), pp. 1011--1043 Springer,
arXiv.1408.5374
[20]
Local inverse estimates for non-local boundary integral operators
M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, and D. Praetorius
Math. Comp., 86(308) (2017), pp. 2651--2686 AMS,
ASC Report 12/2015,
arXiv.1504.04394
[19]
On the coupling of DPG and BEM
with T. Führer and N. Heuer
Math. Comp., 86(307) (2017), pp. 2261--2284 AMS,
arXiv.1508.00630
[18]
DPG method with optimal test functions for a transmission problem
[8]
HILBERT-A MATLAB Implementation of Adaptive 2D-BEM
M. Aurada, M. Ebner, M. Feischl, S. Ferraz-Leite, T. Führer, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius
Numer. Algorithms 67(1) (2014), pp. 1--32 Springer,
ASC Report 24/2011
[7]
Efficiency and optimality of some weighted-residual error estimator for adaptive 2D boundary element methods
M. Aurada, M. Feischl, T. Führer, M. Karkulik, and D. Praetorius
Comput. Methods Appl. Math. 13(3) (2013), pp. 305--332 De Gruyter,
ASC Report 15/2012
[6]
On 2D newest vertex bisection: Optimality of mesh-closure and H^1-stability of L_2-projection
[5]
Convergence of adaptive 3D BEM for weakly singular integral equations based on isotropic mesh-refinement
M. Karkulik, G. Of, D. Praetorius
Numer. Methods Partial Differential Equations 29(6) (2013), pp. 2081--2106 Wiley,
ASC Report 20/2012
[4]
Quasi-optimal convergence rate for an adaptive boundary element method
M. Feischl, M. Karkulik, J.M. Melenk, and D. Praetorius
SIAM. J. Numer. Anal. 51(2) (2013), pp. 1327--1348 SIAM,
Article,
ASC Report 28/2011,
[3]
Classical FEM-BEM coupling methods: nonlinearities, well-posedness,
and adaptivity
M. Aurada, M. Feischl, T. Führer, M. Karkulik, J.M. Melenk, and D. Praetorius
Comp. Mech., 51 (2013), pp. 399--419. Springer,
ASC Report 8/2012,
arXiv:1211.4225
[2]
A posteriori error estimates for the Johnson-Nédélec FEM-BEM coupling
M. Aurada, M. Feischl, M. Karkulik, and D. Praetorius
Eng. Anal. Bound. Elem., 36 (2012), pp. 255--266. Elsevier,
ASC Report 18/2011
[1]
Convergence of adaptive BEM for some mixed boundary value problem
M. Aurada, S. Ferraz-Leite, P. Goldenits, M. Karkulik, M. Mayr, and D. Praetorius
Appl. Numer. Math., 62 (2012), pp. 226--245. Elsevier,
ASC Report 21/2010
Technical Reports
[3]
L2-orthogonal projections onto lowest-order finite elements in Rd are H1-stable